gramex.data
¶
Query and manipule data from any source.
filter(url, args={}, meta={}, engine=None, table=None, ext=None, id=None, columns=None, query=None, queryfile=None, transform=None, transform_kwargs={}, argstype={}, kwargs)
¶
Filter data using URL query parameters.
Examples:
>>> gramex.data.filter(dataframe, args=handler.args)
>>> gramex.data.filter('file.csv', args=handler.args)
>>> gramex.data.filter('mysql://server/db', table='table', args={'user': [user']})
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
Union[str, pd.DataFrame]
|
DataFrame, sqlalchemy URL, directory or file name, http(s) URL |
required |
args |
dict
|
URL query parameters as a dict of lists. Pass handler.args or parse_qs results |
{}
|
meta |
dict
|
this dict is updated with metadata during the course of filtering |
{}
|
engine |
str
|
over-rides the auto-detected engine. Can be ‘dataframe’, ‘file’, ‘http’, ‘https’, ‘sqlalchemy’, ‘dir’ |
None
|
ext |
str
|
file extension (if url is a file). Defaults to url extension |
None
|
columns |
Dict[str, Union[str, dict]]
|
database column names to create if required (if url is a database).
Keys are column names. Values can be SQL types, or dicts with these keys:
- |
None
|
query |
str
|
optional SQL query to execute (if url is a database),
|
None
|
queryfile |
str
|
optional SQL query file to execute (if url is a database).
Same as specifying the |
None
|
transform |
Callable
|
optional in-memory transform of source data. Takes the result of gramex.cache.open or gramex.cache.query. Must return a DataFrame. Applied to both file and SQLAlchemy urls. |
None
|
transform_kwargs |
dict
|
optional keyword arguments to be passed to the transform function – apart from data |
{}
|
argstype |
Dict[str, dict]
|
optional dict that specifies |
{}
|
**kwargs |
dict
|
Additional parameters are passed to
gramex.cache.open, |
{}
|
Returns:
Type | Description |
---|---|
pd.DataFrame
|
Filtered DataFrame |
To filter a DataFrame where column x=1 and y=2:
>>> filtered = gramex.data.filter(dataframe, args={'x': [1], 'y': [2]})
args
is always a dict of lists, which is compatible with Gramex’s handler.args
.
So you can replace the above with
filtered = gramex.data.filter(dataframe, args=handle.args)
To filter ?city=Rome from a CSV/XLS/any file supported by gramex.cache.open:
>>> gramex.data.filter('path/to/file.csv', rel=True, args={'city': ['Rome']})
Remaining kwargs
are passed to gramex.cache.open if url
is a file. So rel=True
works
To filter ?city=Rome from a SQLite, MySQL, PostgreSQL or any SQLAlchemy-supported DB:
>>> gramex.data.filter('sqlite:///x.db', table='data', args={'city': ['Rome']})
Remaining kwargs
are passed to sqlalchemy.create_engine
if url
is a SQLAlchemy URL. E.g.
table
: table name (if url is an SQLAlchemy URL),.format
-ed usingargs
.state
: optional SQL query to check if data has changed.
TODO: Document how to pass params – for each database
If table
or query
is passed to an SQLAlchemy url, it is formatted using args
.
For example
>>> data = gramex.data.filter('mysql://server/db', table='{xxx}', args=handler.args)
… when passed ?xxx=sales
returns rows from the sales table. Similarly:
>>> data = gramex.data.filter(
... 'mysql://server/db', args=handler.args,
... query='SELECT {col}, COUNT(*) FROM table GROUP BY {col}')
… when passsed ?col=City
replaces {col}
with City
.
NOTE: To avoid SQL injection attacks, only keys without spaces are allowed.
So ?city name=Oslo
will not work.
The URL supports operators filter like this:
?x
selects x is not null?x!
selects x is null?x=val
selects x == val?x!=val
selects x != val?x>=val
selects x > val?x>~=val
selects x >= val?x<=val
selects x < val?x<~=val
selects x <= val?x~=val
selects x matches val?x!~=val
selects x does not match val?x*=val
selects x matches val case-insensitively?x!*=val
selects x does not match val case-insensitively
Multiple filters are combined into an AND clause. Ranges can also be specified like this:
?x=a&y=b
selects x = a AND y = b?x>=100&x<=200
selects x > 100 AND x < 200
If the same column has multiple values, they are combined like this:
?x=a&x=b
selects x IN (a, b)?x!=a&x!=b
selects x NOT IN (a, b)?x~=a&x~=b
selects x ~ a|b?x>=a&x>=b
selects x > MIN(a, b)?x<=a&x<=b
selects x < MAX(a, b)
Arguments are converted to the type of the column before comparing. If this fails, it raises a ValueError.
You can specify the SQL argument type for database queries with argstype
. This (currently)
only applies when using query
or queryfunction
, not table
:
argstype: {'x': {type: float}, 'y': {type: bool}}
treats x as a float and y as a boolargstype: {'x': {type: int, expanding=True}}
treats x as a list of int, suitable for use in anIN
clause, e.g.SELECT * FROM table WHERE size IN :x
These URL query parameters control the output:
?_sort=col
sorts column col in ascending order.?_sort=-col
sorts in descending order.?_limit=100
limits the result to 100 rows?_offset=100
starts showing the result from row 100. Default: 0?_c=x&_c=y
returns only columns[x, y]
.?_c=-col
drops col.
If a column name matches one of the above, you cannot filter by that column. Avoid column names beginning with _.
To get additional information about the filtering, use:
meta = {} # Create a variable which will be filled with more info
filtered = gramex.data.filter(data, meta=meta, **handler.args)
The meta
variable is populated with the following keys:
filters
: Applied filters as[(col, op, val), ...]
ignored
: Ignored filters as[(col, vals), ('_sort', col), ('_by', col), ...]
excluded
: Excluded columns as[col, ...]
sort
: Sorted columns as[(col, True), ...]
. The second parameter isascending=
offset
: Offset as integer. Defaults to 0limit
: Limit as integer -None
if limit is not appliedcount
: Total number of rows, if availableby
: Group by columns as[col, ...]
inserted
: List of (dict of primary values) for each inserted row
These variables may be useful to show additional information about the filtered data.
Source code in gramex\data.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
|
delete(url, args={}, meta={}, engine=None, table=None, ext=None, id=None, columns=None, query=None, queryfile=None, transform=None, transform_kwargs={}, argstype={}, kwargs)
¶
Deletes data using URL query parameters.
Examples:
>>> gramex.data.delete(dataframe, args={'city': ['Oslo']})
>>> gramex.data.delete('mysql://server/db', table='x', args={'city': ['Oslo']})
>>> gramex.data.delete(url, args=handler.args)
It accepts the same parameters as gramex.data.filter, and returns the number of deleted rows.
Source code in gramex\data.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
|
update(url, args={}, meta={}, engine=None, table=None, ext=None, id=None, columns=None, query=None, queryfile=None, transform=None, transform_kwargs={}, argstype={}, kwargs)
¶
Update data using URL query parameters.
Examples:
>>> gramex.data.update(dataframe, args=handler.args, id=['id'])
>>> gramex.data.update('file.csv', args=handler.args, id=['id'])
>>> gramex.data.update('mysql://server/db', table='x', args=handler.args, id=['id'])
id
is a list of column names defining the primary key.
Calling this in a handler with ?id=1&x=2
updates x=2 where id=1.
It accepts the same parameters as gramex.data.filter, and returns the number of updated rows.
Source code in gramex\data.py
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
|
insert(url, args={}, meta={}, engine=None, table=None, ext=None, id=None, columns=None, query=None, queryfile=None, transform=None, transform_kwargs={}, argstype={}, kwargs)
¶
Insert data using URL query parameters.
Examples:
>>> gramex.data.insert(dataframe, args=handler.args, id=['id'])
>>> gramex.data.insert('file.csv', args=handler.args, id=['id'])
>>> gramex.data.insert('mysql://server/db', table='x', args=handler.args, id=['id'])
id
is a list of column names defining the primary key.
Calling this in a handler with ?id=3&x=2
inserts a new record with id=3 and x=2.
If the target file / table does not exist, it is created.
It accepts the same parameters as gramex.data.filter, and returns the number of updated rows.
Source code in gramex\data.py
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
|
get_engine(url)
¶
Detect the type of url passed.
The return value is
'dataframe'
if url is a Pandas DataFrame'sqlalchemy'
if url is a sqlalchemy compatible URL'plugin'
if it is<valid-plugin-name>://...
protocol
if url is of the formprotocol://...
'dir'
if it is not a URL but a valid directory'file'
if it is not a URL but a valid fileNone
otherwise
Source code in gramex\data.py
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
|
create_engine(url, create=sa.create_engine, kwargs)
¶
Cached version of sqlalchemy.create_engine (or any custom engine).
Normally, this is not required. But gramex.data.get_table caches the engine and metadata and uses autoload=True. This makes sqlalchemy create a new database connection for every engine object, and not dispose it. So we re-use the engine objects within this module.
Source code in gramex\data.py
650 651 652 653 654 655 656 657 658 659 660 661 |
|
get_table(engine, table, kwargs)
¶
Return the sqlalchemy table from the engine and table name
Source code in gramex\data.py
664 665 666 667 668 669 670 671 |
|
download(data, format='json', template=None, args={}, kwargs)
¶
Download a DataFrame or dict of DataFrames in various formats. This is used by gramex.handlers.FormHandler. You are strongly advised to try it before creating your own FunctionHandler.
Usage as a FunctionHandler
def download_as_csv(handler): handler.set_header(‘Content-Type’, ‘text/csv’) handler.set_header(‘Content-Disposition’, ‘attachment;filename=data.csv’) return gramex.data.download(dataframe, format=’csv’)
It takes the following arguments:
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
Union[pd.DataFrame, List[pd.DataFrame]]
|
A DataFrame or a dict of DataFrames |
required |
format |
str
|
Output format. Can be |
'json'
|
template |
str
|
Path to template file for |
None
|
args |
dict
|
dictionary of user arguments to subsitute spec |
{}
|
**kwargs |
dict
|
Additional parameters that are passed to the relevant renderer |
{}
|
Returns:
Type | Description |
---|---|
bytes
|
bytes with the download file contents |
When data
is a DataFrame, this is what different format=
parameters
return:
csv
returns a UTF-8-BOM encoded CSV file of the dataframexlsx
returns an Excel file with 1 sheet nameddata
. kwargs are passed to.to_excel(index=False)
html
returns a HTML file with a single table. kwargs are passed to.to_html(index=False)
json
returns a JSON file. kwargs are passed to.to_json(orient='records', force_ascii=True)
.template
returns a Tornado template rendered file. The template receivesdata
asdata
and any additional kwargs.pptx
returns a PPTX generated by pptgenseaborn
orsns
returns a Seaborn generated chartvega
returns JavaScript that renders a Vega chart
When data
is a dict of DataFrames, the following additionally happens:
format='csv'
renders all DataFrames one below the other, adding the key as headingformat='xlsx'
renders each DataFrame on a sheet whose name is the keyformat='html'
renders tables below one another with the key as headingformat='json'
renders as a dict of DataFrame JSONsformat='template'
sendsdata
and allkwargs
as passed to the templateformat='pptx'
passesdata
as a dict of datasets to pptgenformat='vega'
passesdata
as a dict of datasets to Vega
When data
is NEITHER a DataFrame or a dict of DataFrames:
format='json'
renders as JSON if possibleformat='template'
renders the template if possible- all other formats raise a
ValueError
You need to set the MIME types on the handler yourself. Recommended MIME types are in gramex.yaml under handler.FormHandler.
Source code in gramex\data.py
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 |
|
dirstat(url, timeout=10, kwargs)
¶
Return a DataFrame with the list of all files & directories under the url.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str
|
path to a directory, or a URL like |
required |
timeout |
int
|
max seconds to wait. |
10
|
Raises:
Type | Description |
---|---|
OSError
|
if url points to a missing location or is not a directory. |
Returns:
Type | Description |
---|---|
pd.DataFrame
|
DataFrame with 1 row per file/directory in the URL |
The result has these columns.
type
: extension with a.
prefix – ordir
dir
: directory path to the file relative to the URLname
: file name (including extension)path
: full path to file or dir. This equals url / dir / namesize
: file sizemtime
: last modified time in seconds since epochlevel
: path depth (i.e. the number of paths in dir)
Source code in gramex\data.py
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
|
filtercols(url, args={}, meta={}, engine=None, ext=None, query=None, queryfile=None, transform=None, transform_kwargs={}, separator=',', in_memory=False, kwargs)
¶
Filter data and extract unique values of each column using URL query parameters.
Examples:
>>> gramex.data.filtercols(dataframe, args=handler.args)
>>> gramex.data.filtercols('file.csv', args=handler.args)
>>> gramex.data.filtercols('mysql://server/db', table='table', args=handler.args)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
Union[str, pd.DataFrame]
|
Pandas DataFrame, sqlalchemy URL, directory or file name,
|
required |
args |
dict
|
URL query parameters as a dict of lists. Pass handler.args or parse_qs results |
{}
|
meta |
dict
|
this dict is updated with metadata during the course of filtering |
{}
|
engine |
str
|
over-rides the auto-detected engine. Can be ‘dataframe’, ‘file’, ‘http’, ‘https’, ‘sqlalchemy’, ‘dir’ |
None
|
ext |
str
|
file extension (if url is a file). Defaults to url extension |
None
|
query |
str
|
optional SQL query to execute (if url is a database),
|
None
|
queryfile |
str
|
optional SQL query file to execute (if url is a database).
Same as specifying the |
None
|
transform |
function
|
optional in-memory transform of source data. Takes the result of gramex.cache.open or gramex.cache.query. Must return a DataFrame. Applied to both file and SQLAlchemy urls. |
None
|
transform_kwargs |
dict
|
optional keyword arguments to be passed to the transform function – apart from data |
{}
|
separator |
str
|
string that separates columns in a hierarchy. Defaults to |
','
|
in_memory |
bool
|
fetch all unique values and compute filters in-memory. Faster, but takes more memory. |
False
|
**kwargs |
dict
|
Additional parameters are passed to
gramex.cache.open or |
{}
|
Returns:
Type | Description |
---|---|
pd.DataFrame
|
filtered DataFrame |
Remaining kwargs are passed to gramex.cache.open if url
is a file, or
sqlalchemy.create_engine
if url
is a SQLAlchemy URL.
If this is used in a handler as
>>> filtered = gramex.data.filtercols(dataframe, args=handler.args)
… then calling the handler with ?_c=state&_c=district
returns all unique values
in columns of dataframe
where columns are state and district.
Column filter is supported like this:
?_c=y&x
returns df with unique values of y where x is not null?_c=y&x=val
returns df with unique values of y where x == val?_c=y&y=val
returns df with unique values of y, ignores filter y == val?_c=y&x>=val
returns df with unique values of y where x > val?_c=x&_c=y&x=val
returns df with unique values of x ignoring filter x == val and returns unique values of y where x == val
Arguments are converted to the type of the column before comparing. If this fails, it raises a ValueError.
These URL query parameters control the output:
?_sort=col
sorts column col in ascending order.?_sort=-col
sorts in descending order.?_limit=100
limits the result to 100 rows?_offset=100
starts showing the result from row 100. Default: 0?_c=x&_c=y
returns only columns[x, y]
.?_c=-col
drops col.
If a column name matches one of the above, you cannot filter by that column. Avoid column names beginning with _.
You can handle hierarchies by passing ?_c=Country,City
with a comma. This returns all unique
combinations of Country
and City
.
To get the min/max or a column, use aggregations, e.g. ?_c=age|min&_c=age|max
.
You can use ?_c=age|range
as a shortcut that returns min and max of a column.
To get additional information about the filtering, use:
meta = {} # Create a variable which will be filled with more info
filtered = gramex.data.filter(data, meta=meta, **handler.args)
The meta
variable is populated with the following keys:
filters
: Applied filters as[(col, op, val), ...]
ignored
: Ignored filters as[(col, vals), ('_sort', cols), ...]
excluded
: Excluded columns as[col, ...]
sort
: Sorted columns as[(col, True), ...]
. The second parameter isascending=
offset
: Offset as integer. Defaults to 0limit
: Limit as integer -100
if limit is not appliedcount
: Total number of rows, if available
These variables may be useful to show additional information about the filtered data.
Source code in gramex\data.py
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 |
|
alter(url, table, columns=None, kwargs)
¶
Create or alter a table with columns specified.
Examples:
>>> gramex.data.alter(url, table, columns={
... 'id': {'type': 'int', 'primary_key': True, 'autoincrement': True},
... 'when': {'type': 'timestamp', 'default': {'function': 'func.now()'}},
... 'email': {'nullable': True, 'default': 'none'},
... 'age': {'type': 'float', 'nullable': False, 'default': 18},
... })
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str
|
sqlalchemy URL |
required |
table |
str
|
table name |
required |
columns |
Dict[str, Union[str, dict]]
|
column names, with values as SQL types or type objects |
None
|
**kwargs |
dict
|
passed to |
{}
|
Returns:
Type | Description |
---|---|
sa.engine.base.Engine
|
SQLAlchemy engine |
If the table exists, new columns (if any) are added. Existing columns are NOT changed.
If the table does not exist, the table is created with the specified columns.
If there are no changes, the function returns quickly (5 ms), since metadata is cached.
columns
can be a dict with values as SQL types (e.g. "INTEGER"
or "VARCHAR(10)"
):
>>> gramex.data.alter(url, table, columns={'id': 'INTEGER', 'name': 'VARCHAR(10)'})
… or a dict like {column_name: type, column_name: type, ...}
:
>>> gramex.data.alter(url, table, columns={
... 'id': {'type': 'int', 'primary_key': True, 'autoincrement': True},
... 'when': {'type': 'timestamp', 'default': {'function': 'func.now()'}},
... 'email': {'nullable': True, 'default': 'none'},
... 'age': {'type': 'float', 'nullable': False, 'default': 18},
... })
If the columns
values are a dict, these keys are allowed:
type
(str): SQL type, e.g."VARCHAR(10)"
default
(str/int/float/bool/function/dict):- A scalar like
"none@example.org"
for fixed default values - A SQLAlchemy function like
sqlalchemy.func.now()
- A dict like
{function: func.now()}
containing a SQLAlchemy functions
- A scalar like
nullable
(bool): whether column can have null values, e.g.False
primary_key
(bool): whether column is a primary key, e.g.True
autoincrement
(bool): whether column automatically increments, e.g.True
primary_key
and autoincrement
are used only when creating new tables. They do not
change existing primary keys or autoincrements. This is because
SQLite disallows PRIMARY KEY with ALTER
and AUTO_INCREMENT doesn’t work without PRIMARY KEY in MySQL.
Source code in gramex\data.py
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 |
|